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Transient and Steady-State Velocity of Domain Walls
for a Complete Range of Drive Fields

Henry C. Bourne, Jr., and David $. Bartran

Abstract - Approximate analytic solutions for transient and steady-state

180° domain wall motion in bulk magnetic material are{obtaiéed from the
, & : :

dynamic torque equations with a Gilbert damping term. The results for the

Walker region in which the transient solution approaches the familiar Walker .
steady-state solutionare presented in a slightly new form for completeness,

An analytic solution COrresbonding to larger drive fields predicts an oscil-
latory motion with an average value which dec}eases with drive field for
reasonable values of the damping parameter. These;resﬁlts agree with those
ﬁbtained by a computer solution of the torque equation and tho§g‘ohtained with

the assumption of a very large anisotropy field,

INTRODUCT ION
In a previous paper(l), transient solutions for the motion.of domain
walls in bulk magnetic materials were obtained from the vector equation of

motion,
[T - -V '

in which M is the saturation magnetization, vy is the gyromagnetic ratio,
H is the effective field including applied, stray, aniéotropy, and exchange
components, and ¢« 1is the damping parameter., .With the coordinate system
and wall configuration as represented in Fig. 1, the solutions obtained for
@, u, and the corresponding wall velocity, v, are as follows

This work was supported by NSF Grant GH 34584 and NASA Grant NGR-44-006-

00l. H. Bourne is with the Department of Electrical Engineering, Rice Univ-
ersity, Houston, Texas. D. Bartran is with Honeywell, Oklahomd City, Oklahoma.
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VI /2 : .

o (1) (stnp+h )t
in which ¢ is obtained from

. . oh .
2, d 4 M z _ . . .
1+ ety G 23—0 (o -sin29), S ®
In these equatibns A is the exchange constant, hk is the normalized anisotropy

fleld u H /M , h_is the normalized applied field “p H /M, and.ji = 47 X 10" "mks.

The only approximation involved concerns & consistency condition which requires

that
dac, t - ‘
& - Lvmel <o @ v

in order for © # f(y); a basic assumption in the trial solution. IThe solution
under this assumption indicates that this approximation is an excellent one.
for thé wall widths encountered in magnetic materials. ;This‘condition is
équivalent to neglecting the incremental vélocity along the wall compared to
the velocity of the wall center, An alternate assumption whicy-givés the same
result concerns the partition of Eq. 1 such ﬁhat the same terms;ééﬁéte to
determine the structure constaat, C,, and the velocity at the wall.centéf,;v, 
daring the tfansient as in the steady-state solution, which involves no ap-
proximation at least in the region 2hz/d‘5 1. |

For a stationary wall hz, ® = 0 and the equations reduce to the familiar
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{n(tan.QIZ) = y\fﬁﬁ: . For 2hz/q_5 1, fhe Walker solution(z) corresponding
 to 2hz/w = sin 2¢ predicts a contracted wall moving at conatant velocity.

The transient soluéion corresponding to this constant velocity solution is

the one e#amined theoretically and experimentally in previous paperq§1>’(3)'(a)
For completeness and for comparison; this solution is repeated in a slightly
different form together with the solution for 2hz/a > 1. All solutions

assume a step function drive field, hz.

Walker Region:th/a <1

Eq. 5, which prédicts that ¢ increases monotonically in time until it

reaches a steady-state value corresponding to 2hz/a = gin 29, is integrated

to yield
2h /o
‘tan @ = z — | *
1 +1}1-(2hz/a)2 coth Bt - (6)
with '
™ ea . j 2 2
iy 2.'\/1 (zn, /e)? /L + o?y

If the appropriate trigonométric functions of ¢ obtained from Eq, 6 are
substituted in Eq. 4 and the hyperbolic function is expressed in terms of
exponentials, the 'exact" solution of reference (1) is obtained, Note
that a factor inithe gffectivé damping B involves the drive field, With

| th/a < 1, the steady-state value of @ is less than 1/4. Although ¢ itself
ié well-behaved, Eq. 4 is sufficiently complex that the transient response
12, 1/2, . 2y

] < —= <1,

contains an ove;shoot.forl2hkl/4(1 + hk)lla[(l + hk) k =

as previously shown,.

Limiting Case: '2hz/a =1



‘ 2h :
In the limiting case, —55 = 1, either from Eq, 6 or directly from

integration of Eq. 5,

(Vt/u Yot /2

tan @ = .
('YM/uo)atlz + (1 +0a)

'The angle ¢ increases monotonically to 7/4 and the solution is similar to

that of the previous case, with an overshoot in the transient response,

Oscillatory Region:zhz/d >1

In this particular case Eq, 5 predicts that ¢ continues to increase for
all time with a periodically changing rate, TFrom Eq. 4 the velocity behaves

as sin 29 displaced by the relatively small term ahz and mo&ified By a posi-

tive term of oséilla;ing mdgnitﬁde in the-deﬁomiﬁator éo.fﬁaf'tﬁé wall velocity

is alternateljr positive (0 < @ < 1/2) and negative (T/2 < ¢ < T and repeats,

Again Eq. 5 may be integrated directly to obtain

. 2h Jo -
tan @ = z
' 1 '+V(2hz/a)2 « 1 cot wt
. with
Exb_{ o 2 2
w . 2 \/(th/a'); 1 /(1 + o)

The periodic nature of the solution is apparent, The system is in a
steady-state oscillatory condition from the beginning with ﬁo transient in-
volygd. The frequency depends on the drive field; hz. In the limit of
th/u = 1 the previous solution is obtained, -

The maximum velocity magnitude in time is the same as the maximum steady-

state velocity in the Walker region and corresponds to
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1/2

1/4
A

s'm.'ql cos @ = & hklﬂf(i + hk) [(L -+ hk) /2 h

1/2 _ ., 1/2
K B 1

172
v | \/—{(Hh) 2,

independent of the drive field, hz. However, the time at which the maximum . .

sin? g =h 2001 #n

and

cccurs depends on hk and hz and is given by

= L&(2h /e)(1+h )llhfh 1/4
cot wt = '

2n ) ? -

Figs .2, 3, and &4 give the velocity as a function of time for several values

o.f drive fielld and thrée values of hk corresponding to permalloys and
bubble-type materials. |

For 02(-2-11-) << 1, the velocity is approximately equal to zero for
9 = 0,7 which correspounds to wt = 0, 7, The velocity is also approximately

equal to zero for ¢ = T/2 which corresponds to

cot wt[

v=d . 2 ’
_ V(zhz/a') -1
In general more time is spent in the positive velocity region and the velocity'
has a nonzero average value which is shown in Fig. 5. | ‘ |

In the limit of Vfary large drives, ZhZ/O! >> 1, but again o:z(-zg—z) << 1,
the po'sitive' and negative half-cycles of veiocty are an odd function about
we = /2, o =we Ty H t- - and the average velocity is zero, If in addition

hk >> 1 the velocity behaves as sin 2wt atlvery high frequencies,



Coﬁclusibn

With suitable approximations -a complete solution gf the vector equation
-of motion with a viscous damping parameter may be obtained which describes
the motion of a magnetic domain wall over a complei~ range of drive fields,
The solution pertains to a bulk magnetic material . 'scribed by an exchange
constant, an anisotropy constant, a saturation magnetiiation, and a damping
parameter, The oscillatory response predicted im the high drive region
probably may best be explored experimentally in ma;eriais with relatively
small saturation magnétizations and large anisotropy constants.

(5)

These results seem to agree with those reported by Slonczewski and

(6)

by WaLkér and Schryer in a computer solution of the torque equation.
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. Normalized(Véloéity as a‘Function of Time for hk-= pOHk/M

Figure Captions

Coordinate System and Wall Configuration

n

0.0005
and Various Drive Fields ZhZ/G = 2uon/aM ‘

Normalized Velocity as a Function of Time for h = pOHk/M = 1,0
and Various Drivé Fields 2hz/a = ZuOHZVQM

Normalized Velocity as a Function of Time for hk‘= pon/M = 5.0
and Various Drive Fields_th/a = Zpoﬂz/aM
Average Velocity as a Function of Drive Field for Varlous hk

in the Walker Region and in the Oacillatory Region
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